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A VQ-Based Approach to Thermal Image Analysis
for Printed Circuit Boards Diagnosis
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Abstract—This paper proposes a novel method to analyze the
thermal image of a printed circuit board (PCB) for fault detec-
tion. In this method, a gold thermal image is first generated from
the thermal images of the PCB in normal operation, and then com-
pressed into a codebook with a certain number of codewords. Each
codeword represents a block of image size four by four. Each block
in the thermal image for the board under test (BUT) is then en-
coded in the same way. The codewords in the codebook are ar-
ranged in ascending order with respect to their mean values. Any
abnormal functional block in BUT can be identified by comparing
the codeword index with that of the corresponding block in the
gold thermal image. The memory size for storing the templates for
comparison is, thus, significantly reduced without diagnosis perfor-
mance degradation. Also, there is not a necessity for feature extrac-
tion such as the feature-based diagnostic methods. In addition, an
adaptive threshold criterion is proposed to improve the detection
sensitivity. From the experimental results, this proposed method
is demonstrated to be very effective in abnormal functional block
identification for PCBs based on the thermal image. Furthermore,
this method is highly modularized for hardware implementation
and parallel realization to speed up the processing time.

Index Terms—Hopfield neural network, printed circuit board
(PCB), thermal image, vector quantization.

I. INTRODUCTION

THE conventional automatic test equipment (ATE) has
some limitations and drawbacks. To name a few, a large

paradox group may result in poor fault isolation, the complexity
of printed circuit board (PCB) can cause many difficulties in
testing, the irregular faults may lead to improper or incomplete
diagnosis, the electronic component interaction may interfere
with the data measurements in probing, and so on [1]. Accord-
ingly, several nondestructive diagnostic techniques have been
developed to facilitate the ATE. These include optical imaging,
X-ray imaging, magnetic field mapping, and thermal imaging
approaches [2]. Among all the methods, the thermal image of
PCB can significantly reveal the faults such as the broken in-
ternal connection, short-circuit loop, open-circuit node, power
supply failure, signal interaction, and component malfunction.
In addition, the thermal imaging diagnostic system has the
advantages of no contact problem, rapid image acquisition,
easy operation, and simple testing reconfiguration. Therefore,
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the thermal imaging approach has been widely applied in the
past decade to diagnose faults on PCBs [1]–[15].

Among these techniques, the artificial neural network-based
approach is widely used. In this approach, the diagnostic
rules/relationships are first developed for training the neural
networks in a supervised or unsupervised way with the thermal
features and known faults. The generally used thermal features
include peak temperature, mean temperature, maximal temper-
ature gradient, and temperature difference measures [1], [10].
Second, the segmentation of the thermal image is required to
find out the abnormal hot/cold spots and identify the most likely
failure sites with the highest probability of occurrence based on
some distribution, especially the F distribution [6], [12], [13].
Finally, the thermal image data is acquired from the designed
system setup and fed to the neural network for fault diagnosis
and identification [9].

In the thermal image processing mentioned above, the well-
known “gold thermal image” has been used in all methods. The
thermal features defined for the gold thermal image include the
rate of temperature change, peak temperature, averaged temper-
ature, and hot spots. In this paper, the peak temperature is used
as the thermal feature for our application. In the traditional al-
gorithm, one gold thermal image contains one feature only. The
more the features used, the more the memory size that will be
needed. The thermal image for the printed circuit board under
test is then compared with these gold thermal images in se-
quence. Therefore, how to reduce the memory size for storing
the gold thermal images and how to concurrently process the
gold thermal image become the interesting issues in PCB anal-
ysis.

In this paper, a novel vector quantization (VQ)-based ap-
proach that not only reduces the memory size but also compares
each codeword is proposed. The gold thermal image is coded
into a codebook and compared with the BUT to identify the
image blocks with faults, instead of the whole thermal image.
VQ is a popular and effective method used for image compres-
sion. It has the merit of keeping the major feature of an image
during the codebook generation with only a minimal distortion.
Thus, the memory size for the gold thermal image may be sig-
nificantly reduced. As long as the VQ algorithm provides high
signal-to-noise ratio, the distortion of the gold thermal image
can be minimized. In addition, a new adaptive threshold crite-
rion is also proposed here for improving the sensitivity.

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed methods in detail. Section III
gives several application examples with results, and finally the
concluding remarks are made in Section IV.
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Fig. 1. Thermal image represented by codeword using vector quantization.

II. VQ-BASED THERMAL IMAGE ANALYSIS

For the sake of completeness, the basics of the temperature
and thermal radiation are briefly summarized in the following.
Any object with the temperature above 0 K will radiate thermal
energy over all wavelengths which may be described as [16],
[17]

(1)

where denotes the Stefan–Boltzmann constant
W/m K , and is absolute temperature K. In practice,

no objects would radiate the thermal energy as the ideal black-
body does. Thus, (1) should be modified to

(2)

where is the emissivity of the object . In this
experiment, the emissivity for the same type of printed circuit
board is assumed to be constant and may be neglected in the
fault diagnosis. In other words, only the relative temperature
changes between BUT and the gold thermal image are used for
PCB function diagnosis.

A. Compensated Fuzzy Hopfield Neural Network for Vector
Quantization

VQ is a widely applied and very efficient method to low-bit-
rate image compression [18] and several algorithms have been
proposed in the past two decades [18]–[22]. In this paper, VQ is
employed to generate a codebook such that the image is approx-
imated by the associated codewords with a minimal distortion.
Basically, VQ may be defined as a mapping from a -dimen-
sional Euclidean space to a finite subset of as illus-
trated in Fig. 1. The important points in the VQ-based codebook
generation are how and with what to train its vectors. Here, clus-
tering process is considered, in which the training vectors are
classified into their attributed classes based on the minimization
of average distortion between the training vector and the code-
words.

Fig. 2. (a) Signal-flow graph for � in the CFHNN. (b) The block diagram
of the codebook design phase.

An often-used method to assess the quality of image recon-
structed from the codebook is the peak signal to noise ratio
(PSNR). For an image, it may be defined as follows:

(3)

where and are the gray levels of pixel for the
original and reconstructed images, respectively. Two hundred
fifty five is the peak gray level.

In this paper, the compensated fuzzy Hopfield neural network
(CFHNN) algorithm [22] is employed for codebook generation
due to its features of fast convergence and easy energy computa-
tion. The CFHNN algorithm integrates the compensated fuzzy
c-mean model into the learning scheme and updating strategy
of the Hopfield neural network. The energy function is formu-
lated on the basis of within-class scatter matrix. The within-class
scatter matrix is defined to be the average distortion between
the training vectors and the codewords within the same class. In
[21], [22], a 256 256 real image was divided into 4 4 blocks
to generate 4096 nonoverlapping 16-dimensional training vec-
tors. Then, the codebook of size 64 was built using this training
data. Lin et al. showed that a CFHNN algorithm can produce
PSNR over 1.75 to 2.5 dB for image vector quantization of Lena,
F-16, Girl, and Boy-girl images. It was also demonstrated to be
better than the K-means and LBG (Linde Buzo Gray) algorithms
[21].

Let represent the membership function for the training
sample associated with th codeword . It is also the fuzzy
output state of the neuron. is the interconnecting
weight between neuron and neuron , and the bias
input of neuron . Fig. 2(a) shows the signal-flow graph
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local to . The total input to neuron in Fig. 2(a) is com-
puted as

(4)

in (4), is the total weighted input received from
neuron in column , and is the fuzzification parameter.
In practice, an block of training sample is rearranged to
a vector for . The dimension of
is and both and are scalars. Each column of this
two-dimensional modified Hopfield network represents a class
and each row represents a membership for the th class. Let

be the th codeword so that (4) in-
volves the Euclidean distance between the training vector and
codeword . Consequently, the Lyapunov energy function of
this network when using compensated fuzzy c-means (CFCM)
strategy, is defined as

(5)

In order to embed CFCM into CFHNN, the interconnecting
weight vector is computed as

(6)

Furthermore, for speeding up the convergence rate of the energy
function, the input bias proposed by Lin [22]
is also used here. is a constant greater than zero and is
defined as

(7)

Finally, the output state at neuron is obtained as

(8)

The codebook generation is accomplished when the energy
in (5) converges to a minimum. The th codeword will be
given as

(9)

B. Implementation

The gold thermal image is constructed by collecting the
maximal operating temperatures of all normal thermal images.
That is, the maximal temperature of every corresponding pixel
for five normal thermal images is collected and recorded as

the gold thermal image for comparison. Then this gold image
is divided into 400 4 4 nonoverlapping blocks. In practice,
the block of the training sample is represented as a 1 16
vector for . Then, the CFHNN is applied to
generate a codebook containing 64 codewords (i.e., ,

, ). While applying the CFHNN to design
a codebook associated with the gold thermal image, almost
all the thermal information is blended into this codebook.
Consequently, in the encoding phase each block (i.e., training
sample ) of gold thermal image can be assigned to an index

in a sense of least square Euclidean distance between the
training sample and each codeword . However, many
algorithms based on Euclidean distance and Cauchy–Schwarz
inequality are used to reduce the computational complexity
in the encoding phase [23]–[25]. In the diagnostic phase, the
concept of Cauchy–Schwarz inequality is employed to develop
an adaptive threshold criterion to detect abnormal regions of the
BUT. The proposed VQ-based comparison technique (VBCT)
is summarized as follows.

1) Codebook Generation: In this phase, the gold thermal
image is divided into blocks denoted as containing
pixels. Let blocks be the input to the CFHNN to generate a
codebook with codewords as described in Section II-A
and shown in Fig. 2. The CFHNN algorithm is described in de-
tail as follows.

Step 1) Input a set of training samples
with the given number of

codewords C, fuzzification parameter ,
constant (these values are selected ac-
cording to [22]), set the convergence threshold

, and initialize the membership
functions of th training samples for all neu-
rons , where

and . Then, set
.

Step 2) Compute the input bias , where
is defined in (7).

Step 3) Compute the interconnecting weight vector
using (6).

Step 4) Calculate the input for each neuron .
Step 5) Apply (8) to update the membership values for all

the neurons
Step 6) Increase by one. If , then go to step 2;

otherwise, set and then go to step 7.
Step 7) Update and then com-

pute . If , then go to
step 2; otherwise, go to step 8.

Step 8) Find all codewords using (9)

2) Encoding Phase: After the codebook for gold thermal
image is generated, the index can be found as the least square
Euclidean distance between codeword and input vector .
Mapping that assigns an index to each block
must satisfy

(10)
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where

(11)

(12)

and

(13)

The mean value of each block in gold thermal image and a
codeword in codebook is used for fault diagnosis. The relation
between the Euclidean distance and the mean distance
between and will be described in the following section.

3) Euclidean Distance Measure: First, we define the
squared distance between the sum of components of a block in
gold thermal image and a codeword as

(14)

Moreover, the mean values of and are, respectively, com-
puted as

(15)

and

(16)

According to (10), can be described as
. Hence, according to the Cauchy–Schwarz

inequality [26],
. For

and , the relation
between and should satisfy the following
condition

(17)

Then, substituting (15) and (16) to (14), can be repre-
sented as . The difference between

and , and the Euclidean distance between and
will, thus, satisfy the inequality as (17) and can be further

simplified as

(18)

where

(19)

Since the Euclidean distance between and is mini-
mized, the mean temperature of can be represented by the
mean temperature of , and the error of mean temperature will
be limited by (18). Due to the fact that the gray level of a pixel in
the gold thermal image having the maximal operating tempera-

ture in the same position for all good boards, the mean temper-
ature of block in gold thermal image would be greater than
the mean temperature of block in the thermal image of the
BUT.

If is the mean temperature in a proper block of the BUT,
then it is true that and it should also satisfy the fol-
lowing equation

(20)

As mentioned previously, vector quantization is a technique
that maps training vectors
in Euclidean -dimensional space into a set of

points in , called a codebook.
The mapping is usually defined to minimize expected distortion
measure using the mean square error (MSE)
given by . Fig. 4(b) shows
the image reconstructed from the codebook designed by the
CFHNN algorithm with codebook size and codeword
size . It produces a high PSNR(38.8 dB) for this
image. Note that PSNR is 27.76 dB for the test image Lenna
reconstructed from the codebook designed by CFHNN with

and . According to the CFHNN algorithm,
codeword contains the intensity variation of all the asso-
ciated blocks . With (18), in normally functioning
BUT will be limited to the range between the upper mean
temperature and the lower mean temperature

(21)

and

(22)

When the mean of the block is compared with the
mean of the associated codeword , then the block
is identified as a faulty block, if .
Furthermore, if and satisfy (20), then according to the
(10), codeword is assigned to the block . This is a normally
functioning block as described above.

Consequently, (21) is used to assure that the mean tempera-
ture of the block is mapped to the same codeword ,
as well as block . If is greater than , it implies that
the mean temperature of the block is greater than that of the
block . It can be easily seen that the block in the BUT is a
faulty block.

4) Diagnostic Phase: The thermal image of the BUT is also
divided into blocks, and each block consists of pixels
(i.e., , , and are of equal size). However, the thermal in-
formation about the gold thermal image is blended into a code-
book. Accordingly, in the diagnostic phase the mean difference
between and its corresponding codevector is computed
instead of the thermal subimage of the specific region [9], de-
vice [1], [10], or hot spots [6], [12], [13] in the conventional
methods.

5) Adaptive Threshold Criterion: Before comparing each
block in the BUT with each codeword , not only the index

for the block (in the gold thermal image) that is calculated

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on October 28, 2008 at 02:16 from IEEE Xplore.  Restrictions apply.



HUANG et al.: A VQ-BASED APPROACH TO THERMAL IMAGE ANALYSIS FOR PRINTED CIRCUIT BOARDS DIAGNOSIS 2385

from (10) but also the Euclidean distance between each
block and codeword that is generated in the encoding
phase are saved. Furthermore, the codewords are sorted by
their mean values in ascending order. Thus, when the mean
temperature is greater than , it will be evident in the
diagnostic phase that block (in the thermal image of BUT) is
not represented by the codeword . In other words, the mean
temperature of block in the BUT is greater than that of the
corresponding block in gold thermal image. This block
will be identified as a faulty block.

However, the greater the Euclidean distance , the
smaller the sensitivity of the fault detection. For further expla-
nation, let us define

(23)

(24)

where represents the maximum distance between the block
and codeword , and is the distance of mean values

of the adjacent codewords. In particular, if is greater than
, according to (21) will then be greater than . In

this case, although (the mean value of the associated block
in the BUT) satisfying (20), may be greater than

in application.
In order to increase the diagnostic sensitivity, we have pro-

posed an adaptive threshold technique when the value of is
too large. Accordingly, this criterion technique will be applied
to classify block as a faulty block if the following criteria are
met.

Criterion 1) and .
Criterion 2) and .
Criterion 1) means that the mean value of the block

does not satisfy (20). It implies that block does not belong
to codeword in general case. In other words, the distance
between and is greater than the distance between and

. Certainly, the block in the BUT is a faulty block.
Criterion 2) applies to the case when the Euclidean distance

between and is too large such that there exists practically a
large mean temperature error for the block being represented
by the codeword . To solve this problem, we apply Criterion
2) to reduce the threshold value. In summary, when the mean
value of the block in the BUT satisfies (20), we still classify
this block as a faulty block, if Criterion 2) is met.

The detailed description of the proposed method to detect
faulty block is summarized in the following.

Step 1) Divide the gold thermal image of PCB into
blocks ( represents the ’s block) with ele-
ments.

Step 2) Use the CFHNN to design the codebook.
Step 3) Apply (10) to search each block mapping to

the th codeword in the codebook and record
which is defined in (23). In addition, record the
mean value for each codeword , and store the
distance about the mean value between each adja-
cent codeword presented in (24) and the upper
limit mean value as described in (21).

Fig. 3. Picture of the monitor control board.

Step 4) Divide the thermal image of the BUT into blocks.
The size of the block is the same as the block and
the codeword .

Step 5) Detect the faulty block, using the adaptive threshold
criterion technique.

III. APPLICATION EXAMPLES

In this experiment, monitor control board as shown in Fig. 3
(this board controls the DTK C505 monitor working in 800

600 pixels resolution) was investigated using the proposed
method. Five thermal images for five boards with functional
clock were acquired using the Agema Thermovision 550 SW
thermal camera to extract a gold thermal image. The thermal im-
ages for the boards with abnormal functional clocks or floating
pins were obtained for fault diagnosis. The image size is 320
by 240. Some parameters of this system are summarized as fol-
lows. The thermal sensitivity is 0.1 C at 30 C, the wavelength
range for infrared PtSi detector is 3.6–5.0 m, the field of view
is , and the minimal focal distance is 40 cm.

The distance between the camera and the BUT was set to 70
cm. In order to reduce the noise effect of the ambient temper-
ature, the BUT was placed in a chamber. The inner surface of
this chamber was painted black to reduce thermal reflection. Ac-
cording to the investigation of Allred et al. [6], an IC chip would
be still in an adiabatic state at the first 50 seconds after power
on. Thus, in order to avoid thermal stagnation, the thermal image
for the BUT was captured at the 40th second after power on.

Two major components, an Altera CPLD chip
(EPM7128SLC84) and its two buffer chips of this
BUT, are the target area for diagnosis. Since the power
consumption of these chips is proportional to the running clock
frequency, a board with 40-MHz clock is considered to be in
normal state, and boards with 50 and 80 MHz are considered
in abnormal and denoted as BUT1 and BUT2, respectively.
Moreover, the thermal distribution will highly depend on the
power pin connection of the chip. Thus, the boards of two or
three floating power pins were used as faulty boards denoted
as BUT3 and BUT4, respectively. The gold thermal image
containing these three chips is shown in Fig. 4(a). The gold
thermal image reconstructed from the codebook is shown in
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Fig. 4. (a) The gold thermal image extracted from five faultless boards.
(b) Gold thermal image reconstructed from the codebook.

Fig. 5. Thermal images of monitor control board with some fault. (a) BUT1
is the board working at 50 MHz. (b) BUT2 working at 80 MHz. (c) BUT3 is
the monitor controller with two power pins floating. (d) BUT4 with three power
pins floating.

Fig. 4(b). The abnormal thermal images corresponding to
various fault modes are displayed in Fig. 5.

Obviously, it is very difficult to tell the difference between
Figs. 4 and 5 with only visual inspection. This proposed
method with the adaptive threshold criteria is referred to as
vector-based comparison technique (VBCT) and applied to
fault diagnosis. Each mean value of the block between BUT
and the mapping codeword is computed and compared. On
the contrary, the method that directly uses the mean values of
both corresponding blocks in the gold thermal image and the
BUT for fault diagnosis is called the block-based comparison
technique (BBCT). For the performance comparison, the BBCT
is also applied.

Figs. 6–9 show the experimental results including BUT
working at 50 and 80 MHz, with two power pins floating, and
three power pins floating, respectively. (a) and (b) in Figs. 6–

Fig. 6. Identified fault regions for BUT1 using (a) BBCT and (b) VBCT.

Fig. 7. Identified fault regions for BUT2 using (a) BBCT and (b) VBCT.

Fig. 8. Identified fault regions for BUT3 using (a) BBCT and (b) VBCT.

Fig. 9. Identified fault regions for BUT4 using (a) BBCT and (b) VBCT.

9 show the identified faults using BBCT and VBCT methods,
respectively. There are only two blocks that were misclassified
in BUT1 by the VBCT method. The recognition rate is 99.5%.
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Fig. 10. Temperature differences and averaged temperature difference for each
faulty block between the BUT3 and the gold thermal image in VBCT method.

Fig. 11. Temperature differences and averaged temperature difference for each
faulty block between the BUT4 and the gold thermal image in VBCT method.

For BUT2, BUT3, and BUT4, the recognition rates are 99%,
96.25%, and 90.5%, respectively. Furthermore, Figs. 10 and 11
show the temperature differences in each faulty block between
BUT3 and gold image, and BUT4 and gold image. The values
of mean and standard deviation are 0.016 C and 0.089 C
for Fig. 10, and 0.051 C and 0.103 C for Fig. 11. From the
experimental results, it is shown that the proposed VQ-based
diagnostic system is very effective in PCB inspection.

IV. CONCLUDING REMARKS

In this paper, a novel system based on thermal image analysis
for printed circuit board diagnosis is presented. It is based on
the codeword generated from the gold thermal image. The pro-
posed VQ-based approach for the PCB inspection can reduce
the memory size in storing the gold thermal image. In addition,
by the introduction of adaptive threshold criteria, each codeword
may be compared with its actual associated block in the BUT.
The experimental results indicate that up to 90.5% of faulty
blocks can be identified using the proposed method. Since the

proposed method is based on the Hopfield neural network, it is
highly modularized and may be parallelized for speeding up the
processing to run on a multiprocessor system or in a pipelined
architecture. Besides, only the mean computation and compar-
ison are involved in this approach; the diagnostic phase of our
system can easily be implemented in hardware. The disadvan-
tage of this system is that the mean values of the codewords are
nonlinearly distributed over the whole codebook, especially for
the mean values of two adjacent codewords being too close or
similar. This problem will be further investigated in future study.
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